Math 138 – Practice Final exam

Instructions:

- You have 3 hours to complete this exam.
- $\bullet\,$ No external resources are allowed.
- Do not hesitate to ask for clarification on exam questions.

Question 1. (15 pts)

Please provide a **counterexample and/or disproof** to each of the following incorrect claims—be sure to justify why it is a counterexample/disproof.

- 1. **(5 pts)** If (X, \leq) is a poset with $\#X \leq 2^n$, then (X, \leq) admits an embedding into $(\mathcal{P}(\{1, \ldots, n\}), \subseteq)$.
- 2. (5 pts) For $a, b \in \mathbb{Z}$ and p a prime number, one has that $v_p(a+b) = \max(v_p(a), v_p(b))$.
- 3. (5 pts) Let $f: X \to Y$ be a function and consider $A \subseteq Y$. Then, we have the following equality of subsets of Y

$$A = f(f^{-1}(A)).$$

Math 138 – Practice final	Namo	
Math 158 – Fractice illiai	Name:	

1 / 1 - 1 -	120	D	C	. 1
watn	138 -	- Practice	пna	ЭI

Name:

Question 2. (10 pts)

Prove by induction that 6 divides $n^3 - n$ for all $n \ge 1$.

Math 138 – Practice final	Namo	
Math 158 – Fractice illiai	Name:	

Λ.	/lath	138 -	- Pra	ctice	fina	1
11	таын	1.00 -	- 1 1a	Curce	шна	ı

Question 3. (15 pts)

Let n and m be coprime elements of \mathbb{N} (i.e., they have no common prime divisors). Show that if $x \in \mathbb{N}$ and $\sqrt[m]{x^n}$ is rational, then $\sqrt[m]{x}$ is already rational.

Math 138 – Practice final	Name:	

Question 4. (15 pts)

Let (X, \leq) be a poset. Define the *opposite poset* (X, \leq^{op}) to have the same underlying set X, but with relation defined by

$$x \leqslant^{\text{op}} y \iff y \leqslant x.$$

- 1. (7 pts) Show that (X, \leq^{op}) is a poset.
- 2. **(8 pts)** Show that if (Y, \preceq) is another poset, then $(X, \leqslant) \simeq (Y, \preceq)$ if and only if $(X, \leqslant^{\text{op}}) \simeq (Y, \preceq^{\text{op}})$. (Recall: \simeq means isomorphism)

Math 138 – Practice final	Name:	

Question 5. (20 pts)

Let $f \colon X \to Y$ be a function. Show that the following are equivalent:

- 1. f is bijective,
- 2. for all subsets $A\subseteq X$ the following equality of subsets of Y holds:

$$f(X - A) = Y - f(A).$$

Math 138 – Practice final	Name:	

Question 6. (25 pts)

Let $\mathbb Q$ be the set of rational numbers. Consider the set $\mathcal I$ of all closed intervals with rational endpoints:

$$\mathcal{I} = \{ [a, b] : a, b \in \mathbb{Q}, \ a \le b \}.$$

In the following, you are free to use any facts we proved in class (although state clearly those that you are using).

- 1. (10 pts) Prove that \mathcal{I} is countable.
- 2. (10 pts) Let \mathcal{U} be the set of all finite unions of such intervals, i.e.,

$$\mathcal{U} = \{ [a_1, b_1] \cup \cdots \cup [a_n, b_n] : n \ge 1, [a_i, b_i] \in \mathcal{I} \text{ for each } i \}.$$

Prove that \mathcal{U} is countable.

3. (5 pts) Briefly explain why this does *not* contradict the fact that there are uncountably many subsets of [0, 1].

Math 138 – Practice final	Name:	